9 research outputs found

    Reinforcement Learning Based Cooperative P2P Energy Trading between DC Nanogrid Clusters with Wind and PV Energy Resources

    Full text link
    In order to replace fossil fuels with the use of renewable energy resources, unbalanced resource production of intermittent wind and photovoltaic (PV) power is a critical issue for peer-to-peer (P2P) power trading. To resolve this problem, a reinforcement learning (RL) technique is introduced in this paper. For RL, graph convolutional network (GCN) and bi-directional long short-term memory (Bi-LSTM) network are jointly applied to P2P power trading between nanogrid clusters based on cooperative game theory. The flexible and reliable DC nanogrid is suitable to integrate renewable energy for distribution system. Each local nanogrid cluster takes the position of prosumer, focusing on power production and consumption simultaneously. For the power management of nanogrid clusters, multi-objective optimization is applied to each local nanogrid cluster with the Internet of Things (IoT) technology. Charging/discharging of electric vehicle (EV) is performed considering the intermittent characteristics of wind and PV power production. RL algorithms, such as deep Q-learning network (DQN), deep recurrent Q-learning network (DRQN), Bi-DRQN, proximal policy optimization (PPO), GCN-DQN, GCN-DRQN, GCN-Bi-DRQN, and GCN-PPO, are used for simulations. Consequently, the cooperative P2P power trading system maximizes the profit utilizing the time of use (ToU) tariff-based electricity cost and system marginal price (SMP), and minimizes the amount of grid power consumption. Power management of nanogrid clusters with P2P power trading is simulated on the distribution test feeder in real-time and proposed GCN-PPO technique reduces the electricity cost of nanogrid clusters by 36.7%.Comment: 22 pages, 8 figures, to be submitted to Applied Energy of Elsevie

    Power Management of Nanogrid Cluster with P2P Electricity Trading Based on Future Trends of Load Demand and PV Power Production

    Full text link
    This paper presents the power management of the nanogrid clusters assisted by a novel peer-to-peer(P2P) electricity trading. In our work, unbalance of power consumption among clusters is mitigated by the proposed P2P trading method. For power management of individual clusters, multi-objective optimization simultaneously minimizing total power consumption, portion of grid power consumption, and total delay incurred by scheduling is attempted. A renewable power source photovoltaic(PV) system is adopted for each cluster as a secondary source. The temporal surplus of self-supply PV power of a cluster can be sold through P2P trading to another cluster (s) experiencing temporal power shortage. The cluster in temporal shortage of electric power buys the PV power to reduce peak load and total delay. In P2P trading, a cooperative game model is used for buyers and sellers to maximize their welfare. To increase P2P trading efficiency, future trends of load demand and PV power production are considered for power management of each cluster to resolve instantaneous unbalance between load demand and PV power production. To this end, a gated recurrent unit network is used to forecast future load demand and future PV power production. Simulations verify the effectiveness of the proposed P2P trading for nanogrid clusters.Comment: This article is submitted for publication in Sustainable Cities and Societ

    Development of Charging/Discharging Scheduling Algorithm for Economical and Energy-Efficient Operation of Multi-EV Charging Station

    No full text
    As the number of electric vehicles (EVs) significantly increases, the excessive charging demand of parked EVs in the charging station may incur an instability problem to the electricity network during peak hours. For the charging station to take a microgrid (MG) structure, an economical and energy-efficient power management scheme is required for the power provision of EVs while considering the local load demand of the MG. For these purposes, this study presents the power management scheme of interdependent MG and EV fleets aided by a novel EV charging/discharging scheduling algorithm. In this algorithm, the maximum amount of discharging power from parked EVs is determined based on the difference between local load demand and photovoltaic (PV) power production to alleviate imbalances occurred between them. For the power management of the MG with charging/discharging scheduling of parked EVs in the PV-based charging station, multi-objective optimization is performed to minimize the operating cost and grid dependency. In addition, the proposed scheme maximizes the utilization of EV charging/discharging while satisfying the charging requirements of parked EVs. Moreover, a more economical and energy-efficient PV-based charging station is established using the future trends of local load demand and PV power production predicted by a gated recurrent unit (GRU) network. With the proposed EV charging/discharging scheduling algorithm, the operating cost of PV-based charging station is decreased by 167.71% and 28.85% compared with the EV charging scheduling algorithm and the conventional EV charging/discharging scheduling algorithm, respectively. It is obvious that the economical and energy-efficient operation of PV-based charging station can be accomplished by applying the power management scheme with the proposed EV charging/discharging scheduling strategy

    Synchronization of Frequency Hopping by LSTM Network for Satellite Communication System

    No full text

    Distributed Sensor Nodes Charged by Mobile Charger with Directional Antenna and by Energy Trading for Balancing

    No full text
    Provision of energy to wireless sensor networks is crucial for their sustainable operation. Sensor nodes are typically equipped with batteries as their operating energy sources. However, when the sensor nodes are sited in almost inaccessible locations, replacing their batteries incurs high maintenance cost. Under such conditions, wireless charging of sensor nodes by a mobile charger with an antenna can be an efficient solution. When charging distributed sensor nodes, a directional antenna, rather than an omnidirectional antenna, is more energy-efficient because of smaller proportion of off-target radiation. In addition, for densely distributed sensor nodes, it can be more effective for some undercharged sensor nodes to harvest energy from neighboring overcharged sensor nodes than from the remote mobile charger, because this reduces the pathloss of charging signal due to smaller distances. In this paper, we propose a hybrid charging scheme that combines charging by a mobile charger with a directional antenna, and energy trading, e.g., transferring and harvesting, between neighboring sensor nodes. The proposed scheme is compared with other charging scheme. Simulations demonstrate that the hybrid charging scheme with a directional antenna achieves a significant reduction in the total charging time required for all sensor nodes to reach a target energy level

    Development of Charging/Discharging Scheduling Algorithm for Economical and Energy-Efficient Operation of Multi-EV Charging Station

    No full text
    As the number of electric vehicles (EVs) significantly increases, the excessive charging demand of parked EVs in the charging station may incur an instability problem to the electricity network during peak hours. For the charging station to take a microgrid (MG) structure, an economical and energy-efficient power management scheme is required for the power provision of EVs while considering the local load demand of the MG. For these purposes, this study presents the power management scheme of interdependent MG and EV fleets aided by a novel EV charging/discharging scheduling algorithm. In this algorithm, the maximum amount of discharging power from parked EVs is determined based on the difference between local load demand and photovoltaic (PV) power production to alleviate imbalances occurred between them. For the power management of the MG with charging/discharging scheduling of parked EVs in the PV-based charging station, multi-objective optimization is performed to minimize the operating cost and grid dependency. In addition, the proposed scheme maximizes the utilization of EV charging/discharging while satisfying the charging requirements of parked EVs. Moreover, a more economical and energy-efficient PV-based charging station is established using the future trends of local load demand and PV power production predicted by a gated recurrent unit (GRU) network. With the proposed EV charging/discharging scheduling algorithm, the operating cost of PV-based charging station is decreased by 167.71% and 28.85% compared with the EV charging scheduling algorithm and the conventional EV charging/discharging scheduling algorithm, respectively. It is obvious that the economical and energy-efficient operation of PV-based charging station can be accomplished by applying the power management scheme with the proposed EV charging/discharging scheduling strategy

    Anomaly detection of smart metering system for power management with battery storage system/electric vehicle

    No full text
    A novel smart metering technique capable of anomaly detection was proposed for real-time home power management system. Smart meter data generated in real-time were obtained from 900 households of single apartments. To detect outliers and missing values in smart meter data, a deep learning model, the autoencoder, consisting of a graph convolutional network and bidirectional long short-term memory network, was applied to the smart metering technique. Power management based on the smart metering technique was executed by multi-objective optimization in the presence of a battery storage system and an electric vehicle. The results of the power management employing the proposed smart metering technique indicate a reduction in electricity cost and amount of power supplied by the grid compared to the results of power management without anomaly detection

    A New Version of African Vulture Optimizer for Apparel Supply Chain Management Based on Reorder Decision-Making

    No full text
    Supply chains may serve as an effective platform for the development of sustainability by encouraging responsible conduct throughout all chain members and stages. Agent technology may greatly aid in decision-making during supply chain management. Due to recent changes in the seasons, fashion trends, and the requirements of various religions, particularly with regard to the ordering procedure, the supply chain for clothing has become one of the most difficult duties in this area. Because of this, it is crucial to enhance process coordination throughout the whole clothing supply chain and develop a decision-making strategy that functions best in a fluid environment. The Unified Modeling Language (UML) is used in this work to define the relationship between agents and simulate the supply chain process. This research incorporates enhanced African vulture optimizer, a modified bio-inspired approach, and fuzzy inference theory to assist the supply chain agent in determining the appropriate replenishment quantity and reorder point to lower the inventory cost. According to test results, the suggested AAVO-based technique may be successful in determining a target demand ordering amount while reducing the overall cost of the supply chain due to a lowered convergence trend and algorithm accuracy
    corecore